Synthesis and Structural Characterization of a Triplybridged Binuclear Diazenido-complex of Rhenium, $(HNEt_3)[Re_2(NNC_6H_5)_2(SC_6H_5)_7]$

TERRENCE NICHOLSON and JON ZUBIETA*

Department of Chemistry, State University of New York at Albany, Albany, N.Y. 12222, U.S.A.

Received January 15, 1985

Although there have been extensive studies of mononuclear diazenido complexes [1], there has been a single report of a binuclear metal-diazenidospecies [2]. Furthermore, diazenido-complexes with thiolate donors as coligands are relatively rare as are coordination compounds of rhenium with thiolate ligands in general. As part of a systematic study of this chemistry [3], we have synthesized and structurally characterized a binuclear rhenium thiolatodiazenido-complex exhibiting a triple thiolatobridge.

The complex [ReCl(N₂C₆H₅)₂(PPh₃)₂], I, was prepared by reacting [ReOCl₃(PPh₃)₂] with excess phenylhydrazine in methanol. Reaction of I with thiophenol and Et₃N in benzene yields bright red crystals of (HNEt₃)[Re₂(NNC₆H₅)₂(SPh)₇], II, in quantitative yield. Complex II shows a strong infrared band at 1577 cm⁻¹ characteristic of ν (N-N).

Crystals of **II** suitable for X-ray diffraction were grown from dichloromethane-diethylether. Crystal data: space group $P2_1/n$, a = 10.951(2) Å, b =25.198(4) Å, c = 24.112(4) Å, $\beta = 100.32(1)^\circ$, V =6545.9(2) Å³, Z = 4. Structure solution and refinement were based on 2984 reflections to give a final discrepancy factor of 0.056.

*Author to whom correspondence should be addressed.

Fig. 1. ORTEP representation of the binuclear anion $[Re_2-(NNC_6H_5)_2(SC_6H_5)_7]^-$ showing the atom labelling scheme. Selected bond lengths and angles: Re1-Re2, 2.747(2); Re1-S1, 2.451(9); Re1-S2, 2.438(8); Re1-S3, 2.539(7); Re1-S4, 2.374(7); Re1-S5, 2.404(7); Re2-S6, 2.459(8); Re-S7, 2.457(9); Re2-S3, 2.553(7); Re2-S4, 2.390(7); Re2-S5, 2.398(7), Re1-N1, 1.81(2); Re2-N3, 1.81(2); N1-N2, 1.23(3); N3-N4, 1.24(3); Re1-N1-N2, 170.0(18); Re2-N3-N4, 171.4(19); Re1-S3-Re2, 65.6(2); Re1-S4-Re2, 70.4(2); Re1-S5-Re2, 69.8(2); S3-Re1-N1, 164.0(7); S3-Re2-N3, 163.3(6).

The structure of **II** is shown in Fig. 1 with selected bond lengths and angles presented in the caption. The binuclear anion consists of two distorted octahedra sharing a face defined by the sulfur-donors of the bridging thiolate groups. Although many triplybridged thiolates of molybdenum are known, examples in rhenium chemistry are comparatively rare, the only other example being $[\text{Re}_2(\text{NO})_2$ - $(\text{SC}_6\text{H}_4\text{Me})_7]^-$ [4]. In **II** the bridging thiolates are structurally non-equivalent with S4 and S5 coplanar with Re1 and Re2 and occupying positions *pseudotrans* to the terminal thiolate donors, while S3 is

TABLE I. Comparison of Structural Parameters for Triply-bridged Thiolato-complexes with the $[(SR)_2ML(\mu-SR)_3ML(SR)_2]$ Core.^b

Complex	M-M	M-S _b	M-S _b ^a	M–N	N-A(A)	M-S-M
[Mo ₂ (NNPh)(NNHPh)(SCH ₂ CH ₂ S) ₃ (SCH ₂ CH ₂ SH)] ²⁻	2.837(2)	2.433(7)	2.577(6)	1.767(8)	1.33(2)(N)	71.4(S _b) 66.9(S _b ^a)
$[\text{Re}_2(\text{NO})_2(\text{SC}_6\text{H}_4\text{Me})_7]^-$	2.783(1)	2.400(7)	2.564(7)	1.68(2)	1.25(3)(O)	$70.9(2)(S_b)$ 65.7(2)(S _b ^a)
$[Re(NNC_6H_5)_2(SC_6H_5)_7]^-$	2.747(2)	2.392(9)	2.536(7)	1.81(1)	1.24(2)(N)	$70.1(2)(S_b)$ $65.6(2)(S_b^a)$

^bDistances in A, angles in degrees; standard deviations in the last quoted figure in parentheses. Abbreviations X_b , bridging thiolate sulfur in the M-S-S-M rhombus; S_b^a , bridging thiolate *trans* to the multiply-bonding terminal ligand L; A, group bonded to the metal-bound nitrogen.

0020-1693/85/\$3.30

axially disposed to the Re_2S_6 unit and *trans* to the diazenido-group.

There is considerable multiple bond character in the rhenium-diazenido grouping as suggested by the short Re-N bonds, 1.81(2) Å, and the linear Re-N-N unit. A consequence of this strong interaction is a significant *trans* influence, lengthening the Re-S3 distances to 2.536(7) Å compared to an average of 2.392(9) Å for Re-S distances in the Re1-S4-S5-Re2 rhombus. The structural parameters observed for II exhibit pronounced similarities to those previously reported for $[Re_2(NO)_2(SC_6H_4Me)_7]^-$ and $[Mo_2(NNC_6H_5)(NNHC_6H_5)(SCH_2CH_2SH)(SCH_2CH_2 S)_3]^{2-}$, as shown in Table I.

The structure of **II** provides further evidence for the versatility of the triply-bridged coordination mode. The 'diagonal relationship' between molybdenum and rhenium suggests that numerous examples of triply-bridged binuclear rhenium complexes may be accessible, with structural parallels to analogous molybdenum species. Finally, the structural similarity of **II** to the nitrosyl derivative $[Re_2(NO)_2(SC_6H_4-Me)_7]^-$ reinforces the chemical relationship of the diazenido-grouping and the isoelectronic nitrosyl group as three-electron donor ligands with strong preference for linear geometries exhibiting extensive multiple bonding.

The synthetic precursor $[ReCl(N_2C_6H_5)_2(PPh_3)_2]$ reacts with a variety of thiolates to give products whose structures depend on the nature of the thiolate. While reaction with ethanedithiol yields mixtures of monomeric thiolates and $[ReCl_2(NN-Ph)(NNHPh)(PPh_3)_2]$, sterically-hindered thiols such as 2,4-diisopropylthiophenol react to give $[Re(NNC_6-H_5)(TIPT)_4]$ in good yield. The contrasting characteristics of chelating, sterically-hindered, and stericallyinnocent thiolates with rhenium-diazenidoprecursors will be discussed in subsequent reports.

References

- 1 D. Sutton, Chem. Soc. Rev., 443 (1975).
- 2 T.-C. Hsieh, K. Gebreyes and J. Zubieta, J. Chem. Soc., Chem. Commun., 1172 (1984).
- 3 P. J. Blower, J. R. Dilworth, J. P. Hutchinson and J. Zubieta, *Transition Met. Chem.*, 7, 353 (1982).
- 4 P. J. Blower, J. R. Dilworth, J. P. Hutchinson and J. Zubieta, *Transition Met. Chem.*, 7, 354 (1982).